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What we will talk about
  Isabelle with:

 
!  Brief Revision
!  Advanced Automated Proof Techniques 
!  Structured Proofs 

(“declarative style”)



  

Isabelle
  Isabelle is 

 
!  A Kernel-based Interactive Modeling, 
Programming and Theorem Proving 
Environment

!  ... in the Tradition of LCF style Provers 
!  ... purely functional, highly parallel
 execution environment



  

 Isabelle Architecture  
• Observation: 

Effective parallelization is a PERVASIVE PROBLEM, 
that must be addressed 
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 Isabelle Architecture  
• In detail:  
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Provers in Isabelle
 Commonly used internal procedure: 

 
!  fast, formerly: fast_tac  (via auto)
 higher-order tableaux prover. 
 As tactic implemented in the decision
 procedure level.

!  requires (f|d|e)rule - instrumentation 
!  HO-Logics, Quantifier-reasoning, Sets,
 not very strong with large rule sets. 



  

Provers in Isabelle
Commonly used internal procedure: 

 
! simp, formerly: simp_tac  (via auto)
higher-order rewriting prover. 
As tactic implemented, fully internal.

! requires simp-cong-split - instrumentation 
! Quantifier-reasoning, Sets;
pretty strong even with large rule sets. 

! Supports HO-order pattern ordered 
context rewriting with splitting.
Debugging cycles in large rewrite sets 
can be tedious.



  

(External) Provers Isabelle
 Commonly used internal externals : 

 
! blast, formerly: blast_tac  (via auto)
first-order tableaux prover. 
In SML implemented, semi-external, reconstruction 
via PO's.

! requires (f|d|e)rule - instrumentation 
! Quantifier-reasoning, Sets, transitivity;
but not not very strong with large rule sets. 

! Limited wrt. Quantifier alternations, usually
faster than fast though.



  

Provers in Isabelle
Commonly used internal procedure: 

 
! auto, combination tactic consisting 
essentially of

• simp
• blast

Nowadays no longer the strongest prover,
but interactively highly useable, highly 
configurable 
(requires simp and blast instrumentation)



  

Provers in Isabelle
Commonly used internal procedure: 

 
! arith, a tactic solving linear arithmetic. 
Implemented as tactic decision procedure.

Powerful, but relatively slow.



  

(External) in Isabelle
Commonly used semi-internal procedure: 

 
! metis, an SML implementation for a first-order
prover with equality based on ordered 
paramodulation. Proofs integrated in Isabelle
by tactic reconstruction.

NO INSTRUMENTATION NECESSARY.

Working with it incrementally is impossible.
Nowadays usually backend of sledgehammer ;-)



  

External in Isabelle
Commonly used external procedure: 

! smt, an SML interface for SMT solvers supporting
the SMT-lib Format.

Tuned for Z3 (which must be ticked for
“non-commercial use”), for which a tactic
reconstruction of the proofs has been
developed. Quantifiers need instrumentation(Triggers).

VERY POWERFUL for First-Order proofs with
Built-In- Z3 Theories, but discouraged for use in 
final proof documents. Needs instrumentation.
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External in Isabelle
Commonly used external prover interface 

! sledgehammer, an interface to external provers,
which can be server applications.
- local provers: E (first order with equality), 
  Z3 as smt interface
- server applications: Vampire, 

NO INSTRUMENTATION NECESSARY.

Produces (structured) tactical proofs skripts;
works as filter to large rule sets ...
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Prover 

Instrumentations
(simp-blast-auto) 

 



  

Generalities
Do we need still proof development ? 

! sledgehammer makes advances of ATP 
technology palpable for Isabelle Users

! However, one should not overestimate them
- induction,
- quantifier instantiations, in particular HO instances
- deep arithmetic reasoning
- instantiations with non-ground, non-trivial
  intermediate steps, and 
- strategical case-splits
remain key decisions in interactive development,
where metis, Vampire, smt sometimes gloriously fail.



  

Generalities
Do we need still proof development ? 

! In contrast to most ATP's, which follow an

„all - or - nothing“ behaviour, 

simp and auto lend themselves to INTERACTIVE 
development, producing a result following 

„the best that I can“

(which allows for gradually improving the rewrite-sets
or adding intermediate lemmas that were not found
automatically).



  

A Summary of Advanced 
Proof Methods

• advanced procedures:
– insert <thmname>

 inserts local and global facts into assumptions
– induct “φ”, induct_tac “φ”

searches for appropriate induction scheme using
 type information and instantiates it

– cases “φ”,   case_tac “φ”

 searches for appropriate induction scheme using
 type information and instantiates it

 



  

A Summary of Advanced 
Proof Methods

• advanced automated procedures:
– simp [add: <thmname>+] [del: <thmname>+]

      [split: <thmname>+] [cong: <thmname>+]
– auto [simp: <thmname>+] [del ... split ... cong]

     [intro: <thmname>+] [intro [!]: <thmname>+] 
     [dest: <thmname>+] [dest [!]: <thmname>+]
     [elim: <thmname>+] [elim[!]: <thmname>+]

– metis <thmname>+
– arith <thmname>+



  

The Simplifier
Supports Rewriting, in particular:

! Rewriting of HO-Patterns,
! Ordered Rewriting
! Conditional Rewriting
! Context - Rewriting
! Automatic Case-Splitting

INSTRUMENTATION NECESSARY, so it is necessary
to tell which rule should be used HOW.



  

The Simplifier
What is a higher-Order Pattern ?
It is a λ-term of form that is:

! constant head, i.e. of the form c t1 ... tn
! linear in free variables
! All HO Variables occur only in the form:
      F(x1 ... xn) for distinct xi

Seems very limited ? Well, you can have λ !!!

Consider the rule:
∀(λ x. P(x) ∧ Q(x)) = ∀(λ x. P(x)) ∧ (∀(λ x.Q(x))

 



  

The Simplifier
Supports Rewriting, in particular:

! Rewriting of HO-Patterns, i.e. rules of the 
form:

<lhs> = <rhs>

where lhs is a HO-Pattern, where
lhs is linear in the free variables and
free variables in rhs occur also in lhs



  

The Simplifier
Supports Rewriting, in particular:

! Ordered Rewriting: 
There is an implicit wf-ordering on terms.
Rewriting is only done if the re-written
term is smaller. 
Commutativity: a+b = b+a

With a little trickery, one can have ACI rewriting:
disj_comms(2): (P  Q  R) = (Q  P  R)∨ ∨ ∨ ∨
disj_comms(1): (P  Q) = (Q  P)∨ ∨
disj_ac(3): ((P  Q)  R) = (P  Q  R)∨ ∨ ∨ ∨
disj_ac(2): (P  Q  R) = (Q  P  R)∨ ∨ ∨ ∨
disj_ac(1): (P  Q) = (Q  P)∨ ∨
disj_absorb:  (A  A) = A∨
disj_left_absorb: (A  A  B) = (A  B)∨ ∨ ∨



  

The Simplifier
Supports Rewriting, in particular:

! Conditional Rewriting

if_P: P  (if P then x else y) = x⟹
if_not_P: ¬ P  (if P then x else y) = y⟹

apply(simp cong: if_cong)



  

The Simplifier
Supports Rewriting, in particular:

! Context - Rewriting

HOL.if_cong:
    b = c ⟹
         (c  x = u)  ⟹ ⟹
         (¬ c  y = v)  ⟹ ⟹
         (if b then x else y) = (if c then u else v)

HOL.conj_cong: 
      P = P'  (P'  Q = Q')  (P  Q) = (P'  Q')⟹ ⟹ ⟹ ∧ ∧

apply(simp cong: if_cong)



  

The Simplifier
Supports Rewriting, in particular:

! Automatic Case-Splitting
(by a new type of rule which is NOT constant head)
split_if_asm: P (if Q then x else y) = (¬ (Q  ¬ P x  ¬ Q  ¬ P y))∧ ∨ ∧

split_if: P (if Q then x else y) = ((Q  P x)  (¬ Q  P y))⟶ ∧ ⟶

For any data type (example: Option):
Option.option.split_asm:
    P (case x of None  f1 | Some x  f2 x) =⇒ ⇒
    (¬ (x = None  ¬ P f1  ( a. x = Some a  ¬ P (f2 a))))∧ ∨ ∃ ∧
 Option.option.split:
    P (case x of None  f1 | Some x  f2 x) =⇒ ⇒
    ((x = None  P f1)  ( a. x = Some a  P (f2 a)))⟶ ∧ ∀ ⟶

apply(simp split: split_if_asm split_if)



  

blast and auto
Tableaux Provers

! For Logic and Set theory

! Necessary classification as 
• rule
• erule
• drule
• frule

• REVISION ELEMENTARY PROOFS



  

Demo VII

! Some some examples of automatic proof.
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