
  

Isabelle Tutorial:
System, HOL and Proofs

 Burkhart Wolff
Université Paris-Sud 



  

What we will talk about
 



  

What we will talk about
  Isabelle with:

 
!  Brief Revision
!  Advanced Automated Proof Techniques 
!  Structured Proofs 

(“declarative style”)



  

Isabelle
  Isabelle is 

 
!  A Kernel-based Interactive Modeling, 
Programming and Theorem Proving 
Environment

!  ... in the Tradition of LCF style Provers 
!  ... purely functional, highly parallel
 execution environment



  

 Isabelle Architecture  
• Observation: 

Effective parallelization is a PERVASIVE PROBLEM, 
that must be addressed 

kernel PO

decision
procedures

...

...

PIDE jEdit
Scala System Interface

...

multi-core PolySML 

C1 C2 C3 C4

.

.

.



  

 Isabelle Architecture  
• In detail: 

kernel PO

decision
procedures

...

...

PIDE jEdit
Scala System Interface

...

multi-core PolySML 

C1 C2 C3 C4

.

.

.

on the execution platform layer



  

 Isabelle Architecture  
• In detail:  

kernel PO

decision
procedures

...

...

PIDE jEdit
Scala System Interface

...

multi-core PolySML 

C1 C2 C3 C4

.

.

.

on the kernel layer 



  

 Isabelle Architecture  
• In detail:  

kernel PO

decision
procedures

...

...

PIDE jEdit
Scala System Interface

...

multi-core PolySML 

C1 C2 C3 C4

.

.

.

on layer of procedures and 
packages



  

 Isabelle Architecture  
• In detail:  

kernel PO

decision
procedures

...

...

PIDE jEdit
Scala System Interface

...

multi-core PolySML 

C1 C2 C3 C4

.

.

.

on the interface layer
PIDE framework + Editor 



  

 
External Provers

 



  

Provers in Isabelle
 Commonly used internal procedure: 

 
!  fast, formerly: fast_tac  (via auto)
 higher-order tableaux prover. 
 As tactic implemented in the decision
 procedure level.

!  requires (f|d|e)rule - instrumentation 
!  HO-Logics, Quantifier-reasoning, Sets,
 not very strong with large rule sets. 



  

Provers in Isabelle
Commonly used internal procedure: 

 
! simp, formerly: simp_tac  (via auto)
higher-order rewriting prover. 
As tactic implemented, fully internal.

! requires simp-cong-split - instrumentation 
! Quantifier-reasoning, Sets;
pretty strong even with large rule sets. 

! Supports HO-order pattern ordered 
context rewriting with splitting.
Debugging cycles in large rewrite sets 
can be tedious.



  

(External) Provers Isabelle
 Commonly used internal externals : 

 
! blast, formerly: blast_tac  (via auto)
first-order tableaux prover. 
In SML implemented, semi-external, reconstruction 
via PO's.

! requires (f|d|e)rule - instrumentation 
! Quantifier-reasoning, Sets, transitivity;
but not not very strong with large rule sets. 

! Limited wrt. Quantifier alternations, usually
faster than fast though.



  

Provers in Isabelle
Commonly used internal procedure: 

 
! auto, combination tactic consisting 
essentially of

• simp
• blast

Nowadays no longer the strongest prover,
but interactively highly useable, highly 
configurable 
(requires simp and blast instrumentation)



  

Provers in Isabelle
Commonly used internal procedure: 

 
! arith, a tactic solving linear arithmetic. 
Implemented as tactic decision procedure.

Powerful, but relatively slow.



  

(External) in Isabelle
Commonly used semi-internal procedure: 

 
! metis, an SML implementation for a first-order
prover with equality based on ordered 
paramodulation. Proofs integrated in Isabelle
by tactic reconstruction.

NO INSTRUMENTATION NECESSARY.

Working with it incrementally is impossible.
Nowadays usually backend of sledgehammer ;-)



  

External in Isabelle
Commonly used external procedure: 

! smt, an SML interface for SMT solvers supporting
the SMT-lib Format.

Tuned for Z3 (which must be ticked for
“non-commercial use”), for which a tactic
reconstruction of the proofs has been
developed. Quantifiers need instrumentation(Triggers).

VERY POWERFUL for First-Order proofs with
Built-In- Z3 Theories, but discouraged for use in 
final proof documents. Needs instrumentation.



  

 Isabelle Architecture  
• In detail:  

kernel PO

decision
procedures

...

...

PIDE jEdit
Scala System Interface

...

multi-core PolySML 

C1 C2 C3 C4

.

.

.
SMT-Interface to Z3
(CVC3, AltErgo ?)



  

External in Isabelle
Commonly used external prover interface 

! sledgehammer, an interface to external provers,
which can be server applications.
- local provers: E (first order with equality), 
  Z3 as smt interface
- server applications: Vampire, 

NO INSTRUMENTATION NECESSARY.

Produces (structured) tactical proofs skripts;
works as filter to large rule sets ...



  

 Isabelle Architecture  
• In detail:  

kernel PO

decision
procedures

...

...

PIDE jEdit
Scala System Interface

...

multi-core PolySML 

C1 C2 C3 C4

.

.

.

Z3

E

Vampire



  

 
Prover 

Instrumentations
(simp-blast-auto) 

 



  

Generalities
Do we need still proof development ? 

! sledgehammer makes advances of ATP 
technology palpable for Isabelle Users

! However, one should not overestimate them
- induction,
- quantifier instantiations, in particular HO instances
- deep arithmetic reasoning
- instantiations with non-ground, non-trivial
  intermediate steps, and 
- strategical case-splits
remain key decisions in interactive development,
where metis, Vampire, smt sometimes gloriously fail.



  

Generalities
Do we need still proof development ? 

! In contrast to most ATP's, which follow an

„all - or - nothing“ behaviour, 

simp and auto lend themselves to INTERACTIVE 
development, producing a result following 

„the best that I can“

(which allows for gradually improving the rewrite-sets
or adding intermediate lemmas that were not found
automatically).



  

A Summary of Advanced 
Proof Methods

• advanced procedures:
– insert <thmname>

 inserts local and global facts into assumptions
– induct “φ”, induct_tac “φ”

searches for appropriate induction scheme using
 type information and instantiates it

– cases “φ”,   case_tac “φ”

 searches for appropriate induction scheme using
 type information and instantiates it

 



  

A Summary of Advanced 
Proof Methods

• advanced automated procedures:
– simp [add: <thmname>+] [del: <thmname>+]

      [split: <thmname>+] [cong: <thmname>+]
– auto [simp: <thmname>+] [del ... split ... cong]

     [intro: <thmname>+] [intro [!]: <thmname>+] 
     [dest: <thmname>+] [dest [!]: <thmname>+]
     [elim: <thmname>+] [elim[!]: <thmname>+]

– metis <thmname>+
– arith <thmname>+



  

The Simplifier
Supports Rewriting, in particular:

! Rewriting of HO-Patterns,
! Ordered Rewriting
! Conditional Rewriting
! Context - Rewriting
! Automatic Case-Splitting

INSTRUMENTATION NECESSARY, so it is necessary
to tell which rule should be used HOW.



  

The Simplifier
What is a higher-Order Pattern ?
It is a λ-term of form that is:

! constant head, i.e. of the form c t1 ... tn
! linear in free variables
! All HO Variables occur only in the form:
      F(x1 ... xn) for distinct xi

Seems very limited ? Well, you can have λ !!!

Consider the rule:
∀(λ x. P(x) ∧ Q(x)) = ∀(λ x. P(x)) ∧ (∀(λ x.Q(x))

 



  

The Simplifier
Supports Rewriting, in particular:

! Rewriting of HO-Patterns, i.e. rules of the 
form:

<lhs> = <rhs>

where lhs is a HO-Pattern, where
lhs is linear in the free variables and
free variables in rhs occur also in lhs



  

The Simplifier
Supports Rewriting, in particular:

! Ordered Rewriting: 
There is an implicit wf-ordering on terms.
Rewriting is only done if the re-written
term is smaller. 
Commutativity: a+b = b+a

With a little trickery, one can have ACI rewriting:
disj_comms(2): (P  Q  R) = (Q  P  R)∨ ∨ ∨ ∨
disj_comms(1): (P  Q) = (Q  P)∨ ∨
disj_ac(3): ((P  Q)  R) = (P  Q  R)∨ ∨ ∨ ∨
disj_ac(2): (P  Q  R) = (Q  P  R)∨ ∨ ∨ ∨
disj_ac(1): (P  Q) = (Q  P)∨ ∨
disj_absorb:  (A  A) = A∨
disj_left_absorb: (A  A  B) = (A  B)∨ ∨ ∨



  

The Simplifier
Supports Rewriting, in particular:

! Conditional Rewriting

if_P: P  (if P then x else y) = x⟹
if_not_P: ¬ P  (if P then x else y) = y⟹

apply(simp cong: if_cong)



  

The Simplifier
Supports Rewriting, in particular:

! Context - Rewriting

HOL.if_cong:
    b = c ⟹
         (c  x = u)  ⟹ ⟹
         (¬ c  y = v)  ⟹ ⟹
         (if b then x else y) = (if c then u else v)

HOL.conj_cong: 
      P = P'  (P'  Q = Q')  (P  Q) = (P'  Q')⟹ ⟹ ⟹ ∧ ∧

apply(simp cong: if_cong)



  

The Simplifier
Supports Rewriting, in particular:

! Automatic Case-Splitting
(by a new type of rule which is NOT constant head)
split_if_asm: P (if Q then x else y) = (¬ (Q  ¬ P x  ¬ Q  ¬ P y))∧ ∨ ∧

split_if: P (if Q then x else y) = ((Q  P x)  (¬ Q  P y))⟶ ∧ ⟶

For any data type (example: Option):
Option.option.split_asm:
    P (case x of None  f1 | Some x  f2 x) =⇒ ⇒
    (¬ (x = None  ¬ P f1  ( a. x = Some a  ¬ P (f2 a))))∧ ∨ ∃ ∧
 Option.option.split:
    P (case x of None  f1 | Some x  f2 x) =⇒ ⇒
    ((x = None  P f1)  ( a. x = Some a  P (f2 a)))⟶ ∧ ∀ ⟶

apply(simp split: split_if_asm split_if)



  

blast and auto
Tableaux Provers

! For Logic and Set theory

! Necessary classification as 
• rule
• erule
• drule
• frule

• REVISION ELEMENTARY PROOFS



  

Demo VII

! Some some examples of automatic proof.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

